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Smart Spaces and Aml

"A Smart Space is an environment centered on its human users
in which a set of embedded networked artefacts, both
hardware and software, collectively realize the paradigm of
ambient intelligence (AmI)"

« Strongly related to internet of things (IoT)
— Large availability of small and powerful embedded devices
— Interaction through both physical actions and digital identities

« E.g., smart houses and offices
* Realize the paradigm of Ambient Intelligence (AmI)
— different research areas (e.g., AL, HCI, social sciences)

« Immediate impacts on society
— Daily life and work experience
— Energy saving
— Safety and security
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The Aml Loop
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The Role of Knowledge

Knowledge plays a central role in Aml systems
It takes the form of a set of models describing:
— Human routines (habits)
— Environment/device dynamics
— User preferences
Specification-Based
— Represent hand-made expert knowledge using logic formalisms
— Reasoning engines to infer conclusions and to make decisions
— Impractical ® but human-readable ©
Learning-Based

— Represented by using mathematical and statistical formalisms (e.g.,
HMM)

— Automatically extracted © but difficult to be revised ®
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Mining-based Approaches and Process
Mining
* Apply unsupervised or semi-supervised learning
approaches to obtain human readable models

— The best of two worlds!!!

— E.g., Pattern-mining approaches (e.g., CASAS project
[Cook2013])

* Approaches that model human habits as workflows have
been proposed [Aztiria2010]

— Methods applied in controlled conditions!!!

* |s it possible to apply process mining to smart spaces?

— Growing availability and maturity of process mining
techniques ©

— Different challenges must be addressed in a real setting ®
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Current Approaches (1)

Knowledge Driven Approaches:

= ECA Rules:

= Active Database

= Event-Condition-Action (ECA) rules
("ON event IF condition THEN action")

= Ontologies:
* Hand Made
= Models describe relations between sensors
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Current Approaches(2)

Data Driven approaches:

= Goals:

= pattern mining
= iterative compression of the sensor log
= Enactment or recognition

Often used machine learning algorithms (HMM,
SVN), low readability, big amount of data
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Current Approaches(3)

Hybrid Approaches:

= Knowledge-driven + data-driven approach
= Clustering algorithms for activities

= Learning algorithm for models extraction from
actions clusters

= Ontology «seed», enriched using learning
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The Objective
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Habit = Human Process

= Tf we consider habit as human
process, then Process Mining
techniques can be applied.

= Models produced by Process Mining
are in general designed for being
analyzed by humans - more
readable

Process Mining

= Which one? Fuzzy miner, designed
for low structured processes (see
better later!)
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Smart Home in a Box

(A) 1 Server
(B) 3 Relays

(C) 24 Infrared motion sensors

(D) 2 Temperature sensors

(E) 1 Magnetic door sensor

(F) 40 Adhesive strips (D) | (E) e
(G) 34 Batteries (9V, AA) e EETTC

(F)

ey ~—D R~ R

(Washington State University)
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Casas Dataset

Infrared motion sensors

= Area
u POSlTlOn ﬁ.ﬂﬁ.
ON e
OFF m_m
e — .
AON 'A.OFF t
yyyy—-MM-dd HH:mm:ss.SSSSSS SensorName VALUE



The Technique of UIC 2016

> @ Disco




The Technique of UIC 2016

> @ Disco

Only ON values




The Technique of UIC 2016

= Topological compatibility b,
matrix v > @ Disco

= Velocity vector (distance |

matrix) ‘

ON
().l‘-“l-' ON
Filt‘éred
@ Log _ Log |




ON

OFF

&P -

= traces of events

<string kev="concept:name" value="name"/>

y

ON
ON
Filtered
Log

<date key="time:timestamp"
value="2015-11-30T18:25:49.308+01:00"/>

<string kev="Sensor" wvalue="string"/>

<classifier name="Activity" kevs="Sensor"/>



The Technique of UIC 2016
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Fuzzy Mining (1)

= Well suited for unstructured v > (@) pisco
process (alias «Spagheftti-like») f—
= Automated process discovery

= «Road Map of the
processes»:
importance of
connections O
graphically underlined Log Log
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Fuzzy Mining (2)

= Fuzzy Model is composed by:

= Nodes representing activities (sensors)

BedroomABed
2.443

= Edges representing connections [
1639\ 1.615

= Metrics for dynamically filtering \ﬁ s LJ”%
edges/nodes

(significance/correlation)
BathroomAArea
11.896

= Importance of each element is
graphically showed
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KitchenAArea
11.457

LivingRoomAArea
14

1.680) 1.119

KitchenADiningChair
8.134

KitchenASink
7.394

2.898 LivingRoomAChair
2767

BathroomAArea
11.896

KitchenARefrigerator

1.000

BathroomASink
9.566

= Sensor level granularity

® = Isolated models
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= Trajectory analysis
= Higher Granularity
= Complete Habit Model
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Definitions
= Action: atomic interaction with the environment

= Activity: a sequence of actions (just one in extreme
cases) or sensor measurements/events with a final
goal. In some cases an action can be an activity itself

= Habit: a sequence or interleaving of activities that
happen in specific contextual conditions
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Trajectory Analysis Tool (1)

|£] Graphics Viewer - p01.t1_p01.t2_p01.t3_p01.t4_p01.t5 - X
A 1 | sensor Controls

@n @u @u (@12 Imo1 [“mo2 [ mo3
4 5
Mo4 [V]Mos [] Mos

Mo7 []mo8 [v]Mog

wonee | ™ Time Interval
o Selection

M16 [V]m17 [V]M18

M19 [V]m20 [v]m21

M2 [V]m23 [v]M24

s % Evolution Simulation

M28 [V]M29 [/]M30

M31 [V]m32 [v]m33

Control

M34 [M35 [V] M36

.
v Sensor M13 at time Wed Feb 27 13:00:06 CET 2008 switch on. Note: Timestamp=1010000 . S e ns O r S e I e C T I o n
Calculate subtrajectories

v w37 [ ms [Z]m3s
Save Validation
Save Disco file v M40 [V mar [V w42
95 190 285 380 475 570 665 760 855 950 1045 1140 1235 1330 1425
Save subtrajectories
0 1 ® |

Save indexes subtrajectories
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Trajectory Analysis Tool (2)

S
|£] Gyfohics Viewer Np01.t1_p01.t2_p01.t3_p01.t4_p01.t5 - X
A { [ Sensor Controls

sub_traj_1 | AREA

@ @ VMot [“]Mo2 [/]mo3
1 12

o
(S

sub_traj 2 | STOP [“IMo4 [“]mos [v] Mos

| 82 |7 = Pattern Miner:
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simo |88 08/ | pattern. They can be
=2 | yisualized on the

@,
@ @9 @1 @19 M25 [V]M26 []m27
@,

:@@j: @ ), Mm2s [(Am29 (w30 ma p .
= === Traclus Algorithm

M34 [V]M35 [V] M36

) @, | {

=
&
_

sub_traj 6  AREA

J

STOP

sub_traj_7

p] @,
@,

off

sub_traj_8

v Sensor M08 at time Wed Feb 27 12:43:27 CET 2008 switch on. Note: Timestamp=0
Calculate subtrajectories
L V @ [m37 [ 38 [ M3

Save Validation

Save Disco file . M40 [v|M41 |v| M2
0 95 190 285 380 475 570 665 760 855 950 1045 1140 1235 1330 1425

Save subtrajectories [ -
‘ ) ®
y J M43
Save indexes subtrajectories .
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TRACLUS algorithm*

« Trajectory clustering

Glgor'ifhm, deViSCd for. (1) Partition s g & A set of trajectories
describing hurricanes’ / "
trajectories.
. TWO phases: Arepresentatnetra]ectory
* Trajectory %%@g%?
pGI"TITIOHIng A set of line segments } Ao

+ Density-based line-
segment clustering

*Lee, Han, Whang «Trajectory clustering: a partition-and-group framework» in Proceedings of 2007 ACM
SIGMOD international conference on Management of data, 2007



Subtrajectories classification

Sub-trajectories > log segmentation in actions

Trajectory partitioning algorithm output is
categorized in 3 classes:

STAY
AREA

MOVEMENT

e
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Actions classification Indices

I,,(6) is the index related to a quick and heterogeneous
movement

number of distinct sensors
L, (6) —

total number of sensors

I,(8) is the index related to a movementin a given area
1,(8) = Gini coef ficient

I,(8) is the index related to a static activities
1.(5) = attivation time of the most triggered sensor
(6 =

total subtrajectory duration
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Actions classification

Classification Index:
Lot (6) = Wi [ (8) + waly(8) + wels(6)
With:
W +w,+ws =1

Subtrajectory classification:

[ STAY, 0 <1,,,(8)<T,
f(8) ={ AREA, T, <I,,(8)<Tpy
kMOVEMENT, Ty, <I::(6) <1




Evaluation: Habits

163

287

2;3

438

< AREA dining >

3,804

135

137

< STOP bedroom1_door_M006 >
1,126

52 1

< STOP bedroom1_desk_M00S >
1,901

191 1

[

< STOP living_sofa_M010 > ]

1,908

367

04

Eating

<STAY bathroom1_MODS >

STAY passage_bedroom1 Q8 >

<sTAY 1_bed._ih_ 003 >

1w o2

<STAY kitchen,

<AREA badroom1 >

4214
o7
267 48
< AREA dining >
3604
anr
4
148
"
< STAY becroom1_door_M00G >
22 152

< STAY bedroorafsic Mo0s >

<STAY lving_sofa_M010 >

as7

< STAY fving_bookcase_M013>
4445

< STAY kitchen_M017 >
212

B

Sleeping

<AREACetCm! >
o

e WY e

<STOPhiten_Wit
21




SAPIENZA (%0

) SITA DI ROM/ AL
UNIVERSITA DI ROMA \\"_-:./

Evaluation: Similarity Metric
Weighted Jaccard similarity

YiXj min(61 (nin;),G» (ni,nj))+2i min(G,(n;),G,(n;))

G,G,) =
J( 1 2) %X max(61 (Tli,nj)»Gz (ni,nj))"'zi max(G1(n;),G2(n;))
with

G a graph

Gr(n;,n;) = weight arc from n; ton;
Gr(n; ) = weight node n;
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Evaluation

B Weighted Nodes
[] Weighted Edges
B Topological

100% | | | | I I I T I |

80% -
60% [~ -
40% |- -
20% - -

0%
’ Eat Be2To  Enter HomeKep Leave MealPr Relax Resp Sleep WashDis

Jacard percentage value




SAPIENZA (sl
UNIVERSITA DI ROMA \‘ _;'\5'

Conclusions...

= Process discovery technique to mine human
behavior

= Elaborated unsupervised models
= High confidence of the models

..and future works

= User evaluation for readability
= Exploitation of models at runtime
= Anticipation of users decisions



