

An habit is a process: a BPM-based approach for smart spaces

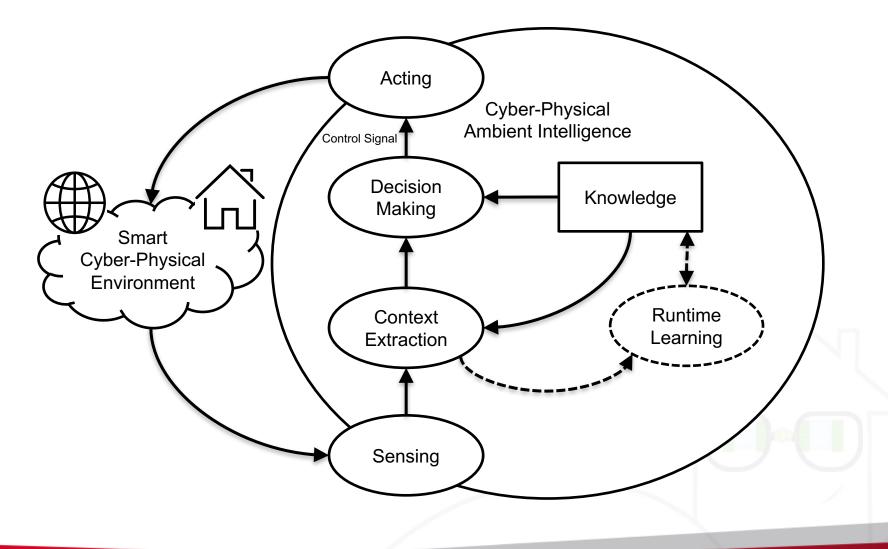
Francesco Leotta Massimo Mecella Daniele Sora

Smart Spaces and AmI

"A Smart Space is an environment centered on its human users in which a set of embedded networked artefacts, both hardware and software, collectively realize the paradigm of ambient intelligence (AmI)"

- Strongly related to internet of things (IoT)
 - Large availability of small and powerful embedded devices
 - Interaction through both physical actions and digital identities
- E.g., smart houses and offices
- Realize the paradigm of Ambient Intelligence (AmI)
 - different research areas (e.g., AI, HCI, social sciences)
- Immediate impacts on society
 - Daily life and work experience
 - Energy saving
 - Safety and security

The Aml Loop

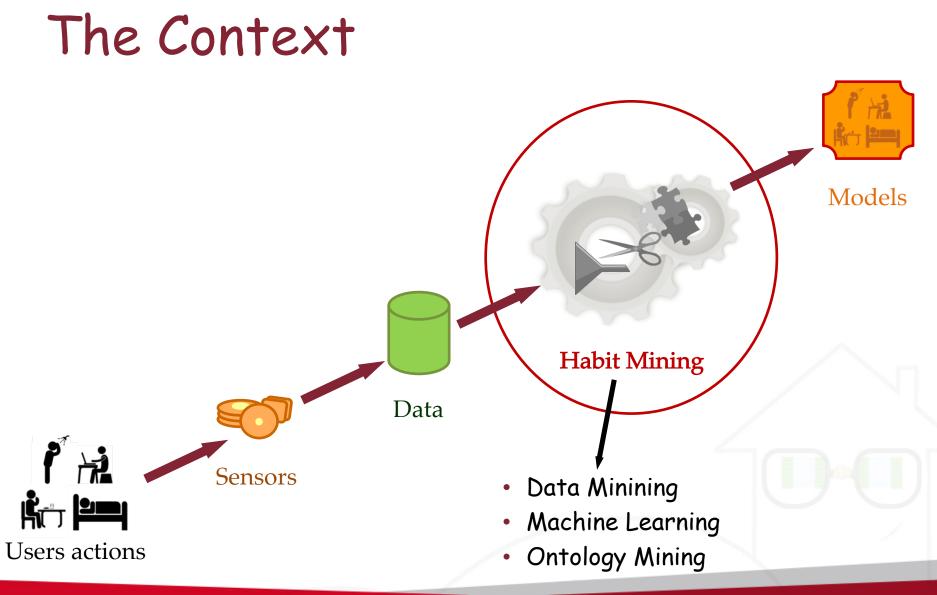


The Role of Knowledge

- Knowledge plays a central role in AmI systems
- It takes the form of a set of models describing:
 - Human routines (habits)
 - Environment/device dynamics
 - User preferences
- Specification-Based
 - Represent **hand-made** expert knowledge using logic formalisms
 - Reasoning engines to infer conclusions and to make decisions
 - Impractical
 But human-readable Impractical
- Learning-Based
 - Represented by using mathematical and statistical formalisms (e.g., HMM)
 - Automatically extracted S but difficult to be revised S

Mining-based Approaches and Process Mining

- Apply unsupervised or semi-supervised learning approaches to obtain human readable models
 - The best of two worlds!!!
 - E.g., Pattern-mining approaches (e.g., CASAS project [Cook2013])
- Approaches that model human habits as workflows have been proposed [Aztiria2010]
 - Methods applied in controlled conditions!!!
- Is it possible to apply process mining to smart spaces?
 - Growing availability and maturity of process mining techniques ⁽²⁾
 - Different challenges must be addressed in a real setting ⁽²⁾



Current Approaches (1) Knowledge Driven Approaches:

- ECA Rules:
 - Active Database
 - Event-Condition-Action (ECA) rules ("ON event IF condition THEN action")
- Ontologies:
 - Hand Made
 - Models describe relations between sensors

Current Approaches(2)

Data Driven approaches:

Goals:

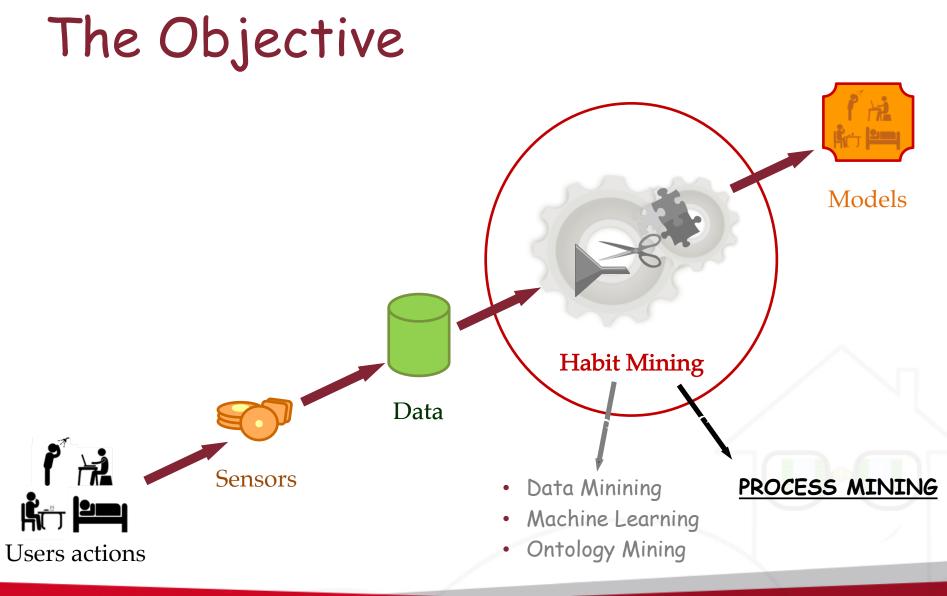
- pattern mining
- iterative compression of the sensor log
- Enactment or recognition

Often used machine learning algorithms (HMM, SVN), low readability, big amount of data

Current Approaches(3)

Hybrid Approaches:

- Knowledge-driven + data-driven approach
 - Clustering algorithms for activities
 - Learning algorithm for models extraction from actions clusters
 - Ontology «seed», enriched using learning

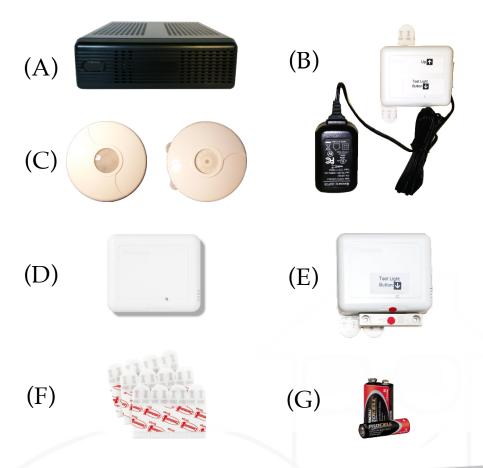


Habit = Human Process

- If we consider habit as human process, then Process Mining techniques can be applied.
- Models produced by Process Mining are in general designed for being analyzed by humans → more readable
- Which one? Fuzzy miner, designed for low structured processes (see better later!)

Smart Home in a Box

(A)	1	Server
(B)	3	Relays
(C)	24	Infrared motion sensors
(D)	2	Temperature sensors
(E)	1	Magnetic door sensor
(F)	40	Adhesive strips
(G)	34	Batteries (9V, AA)



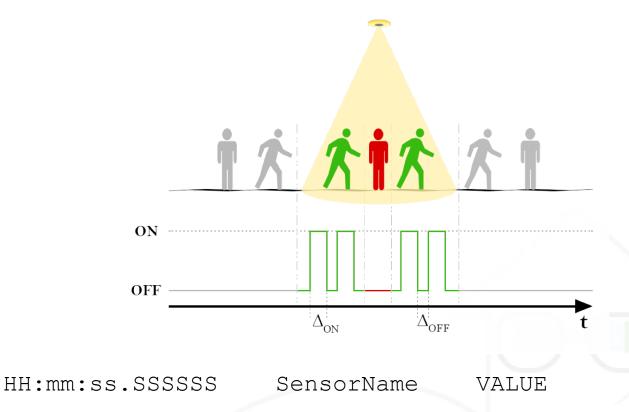
(Washington State University)

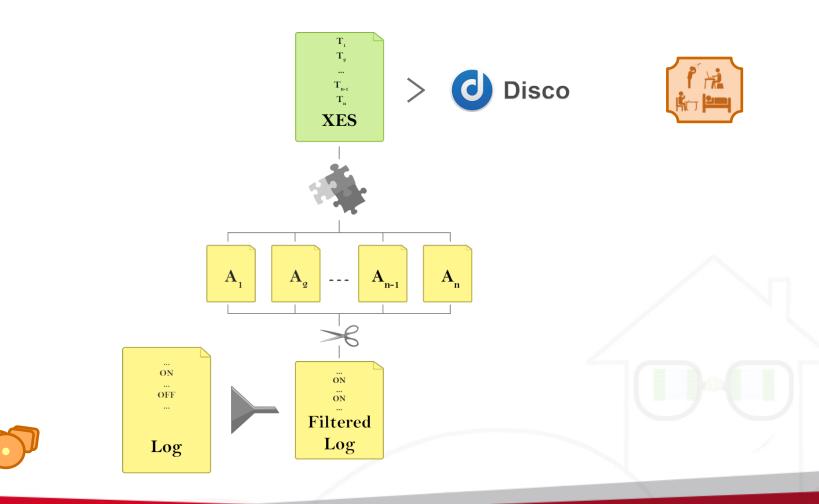
Casas Dataset

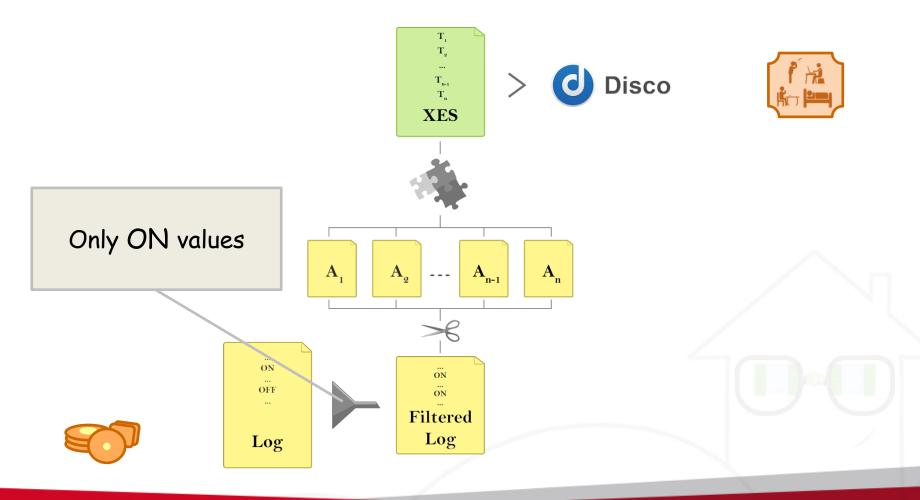
Infrared motion sensors

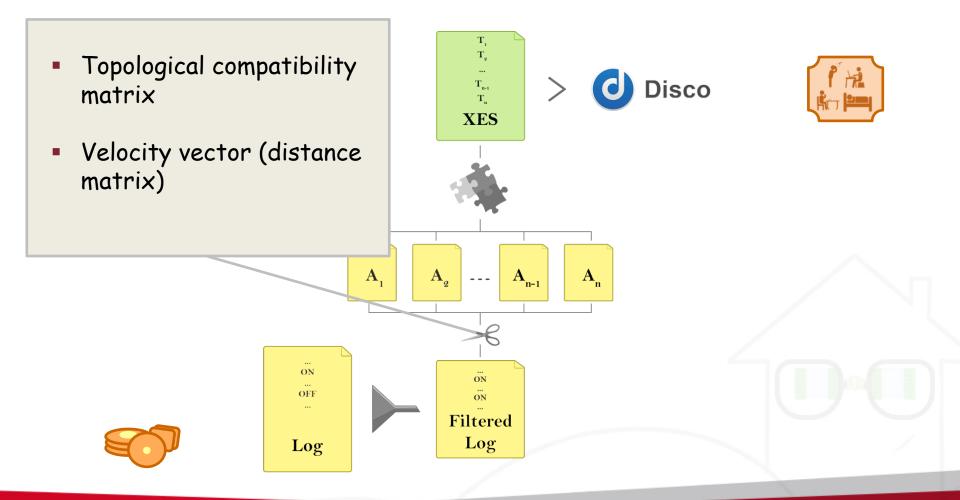
- Area
- Position

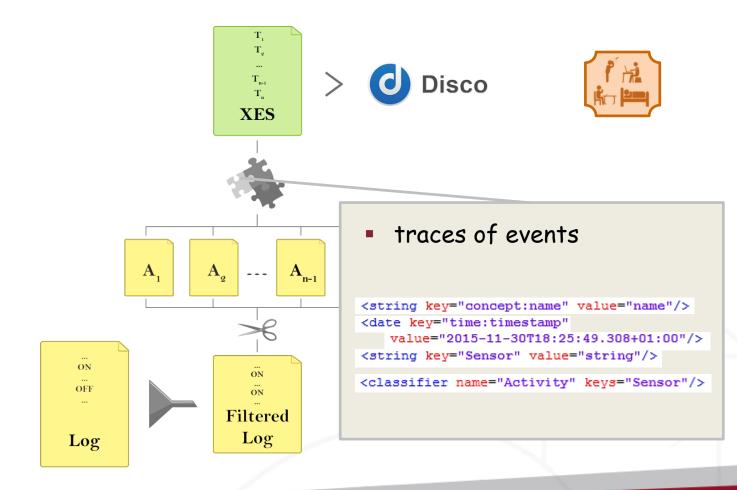
yyyy-MM-dd

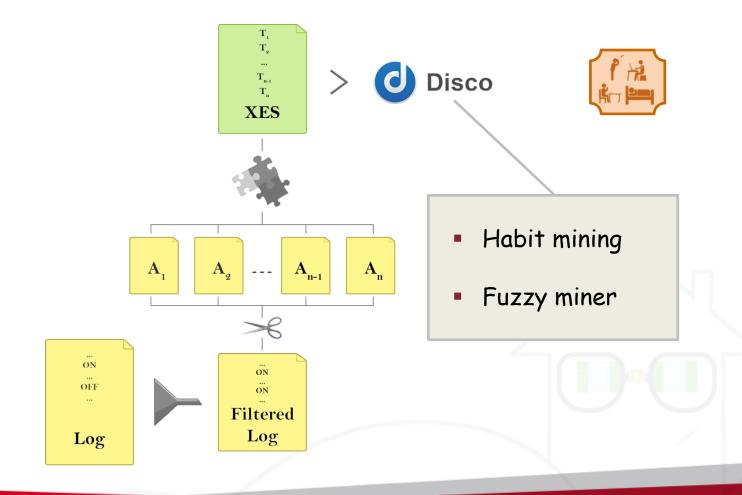






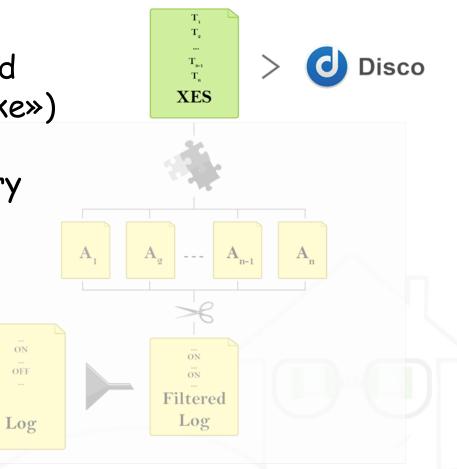






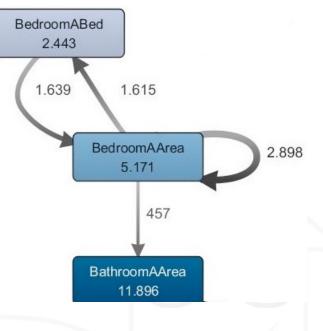
Fuzzy Mining (1)

- Well suited for unstructured process (alias «Spaghetti-like»)
- Automated process discovery
- «Road Map of the processes»: importance of connections graphically underlined

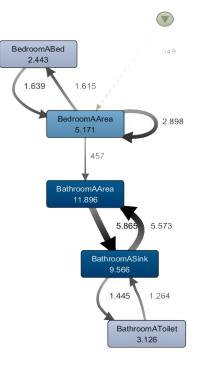


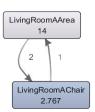
Fuzzy Mining (2)

- Fuzzy Model is composed by:
 - Nodes representing activities (sensors)
 - Edges representing connections
 - Metrics for dynamically filtering edges/nodes (significance/correlation)
 - Importance of each element is graphically showed



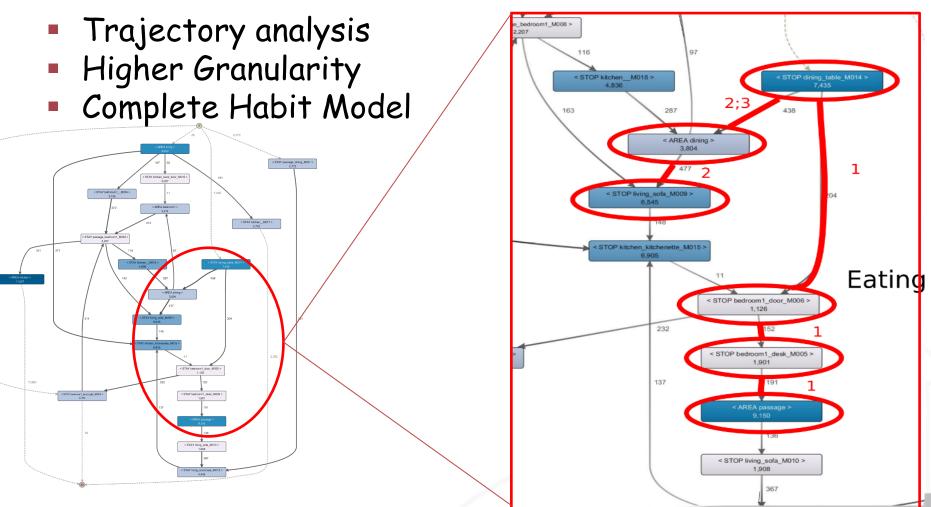
UIC 2016





- Sensor level granularity
- Isolated models

From UIC 2016 to UIC 2017

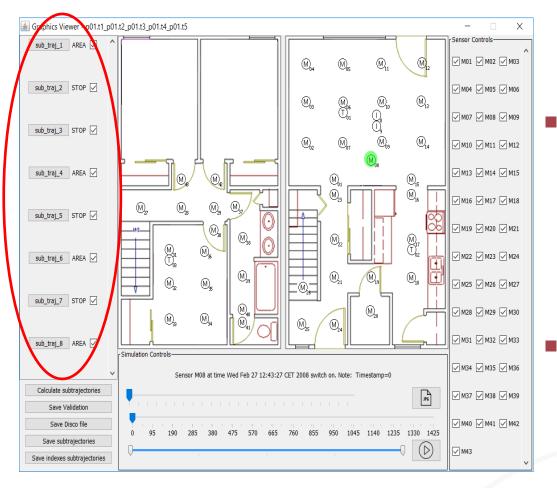


Definitions

- Action: atomic interaction with the environment
- Activity: a sequence of actions (just one in extreme cases) or sensor measurements/events with a final goal. In some cases an action can be an activity itself
- Habit: a sequence or interleaving of activities that happen in specific contextual conditions

Trajectory Analysis Tool (1)

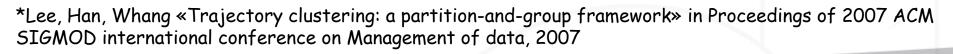
Trajectory Analysis Tool (2)



Pattern Miner: extraction of pattern. They can be visualized on the map. Traclus Algorithm

TRACLUS algorithm*

- Trajectory clustering algorithm, devised for describing hurricanes' trajectories.
- Two phases:
 - Trajectory partitioning
 - Density-based linesegment clustering



(1) Partition TR_3 TR_4 TR_5 TR_5 TR_5 TR_5 TR_2 TR_1 TR_1 TR_2 TR_1 TR_2 TR_1 TR_2 TR_2 TR_1 TR_2 TR_2 TR_2

Subtrajectories classification

Sub-trajectories \rightarrow log segmentation in actions

Trajectory partitioning algorithm output is categorized in 3 classes:

STAY AREA MOVEMENT

Actions classification Indices

 $I_m(\delta)$ is the index related to a quick and heterogeneous movement

 $I_m(\delta) = \frac{number \ of \ distinct \ sensors}{total \ number \ of \ sensors}$

 $I_a(\delta)$ is the index related to a movement in a given area $I_a(\delta) = Gini \ coefficient$

 $I_s(\delta)$ is the index related to a static activities $I_s(\delta) = rac{attivation \ time \ of \ the \ most \ triggered \ sensor}{total \ subtrajectory \ duration}$

Actions classification

Classification Index:

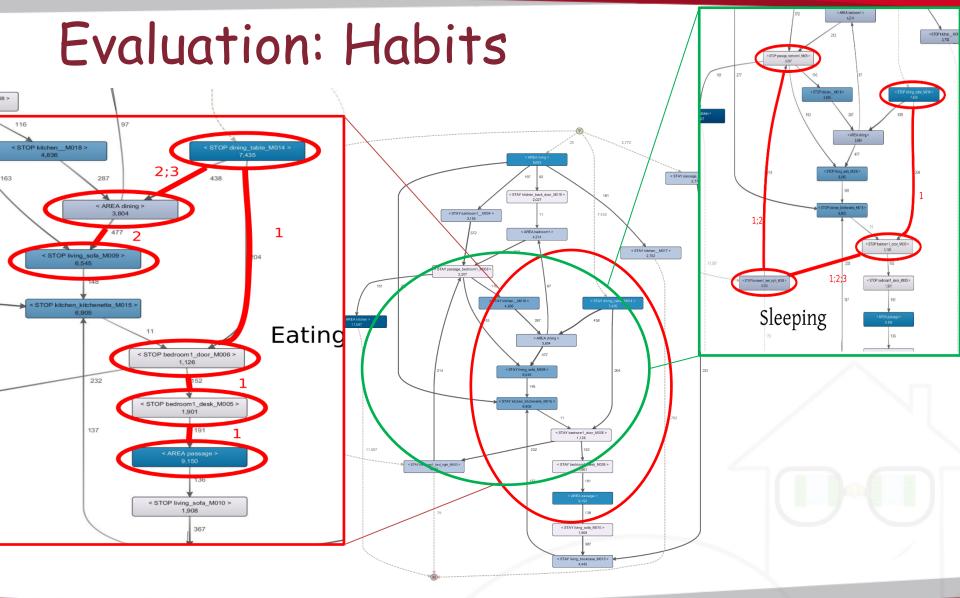
$$I_{tot}(\delta) = w_m I_m(\delta) + w_a I_a(\delta) + w_s I_s(\delta)$$

With:

$$w_m + w_a + w_s = 1$$

Subtrajectory classification:

$$f(\delta) = \begin{cases} STAY, & 0 \leq I_{tot}(\delta) < T_a \\ AREA, & T_a \leq I_{tot}(\delta) < T_m \\ MOVEMENT, & T_m \leq I_{tot}(\delta) \leq 1 \end{cases}$$

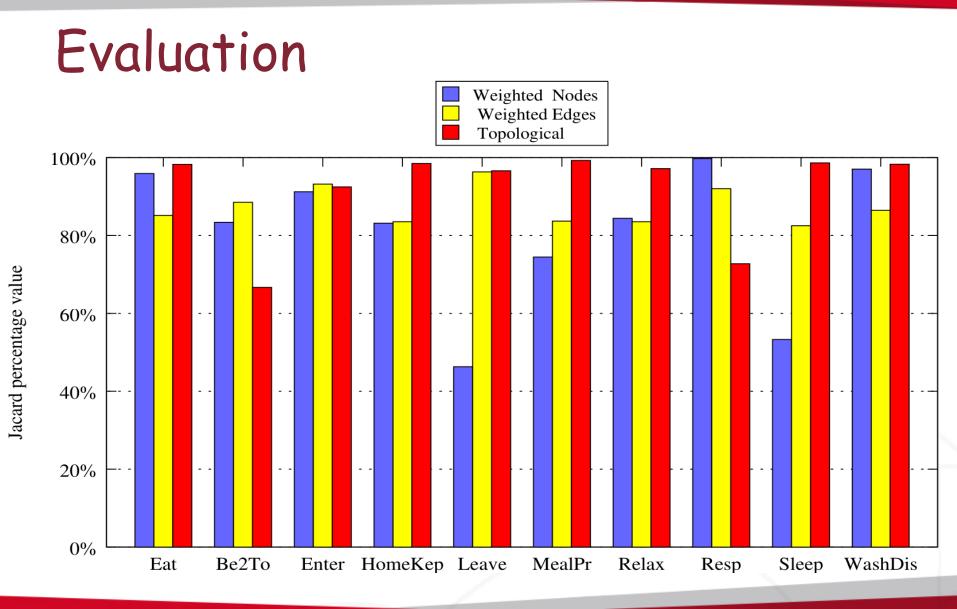


Evaluation: Similarity Metric Weighted Jaccard similarity

$$\mathbf{J}(G_1, G_2) = \frac{\sum_i \sum_j \min(G_1(n_i, n_j), G_2(n_i, n_j)) + \sum_i \min(G_1(n_i), G_2(n_i))}{\sum_i \sum_j \max(G_1(n_i, n_j), G_2(n_i, n_j)) + \sum_i \max(G_1(n_i), G_2(n_i))}$$

with

$$G_k$$
 a graph
 $G_k(n_i, n_j) = \text{weight arc from } n_i \text{ to } n_j$
 $G_k(n_i) = \text{weight node } n_i$



Conclusions...

- Process discovery technique to mine human behavior
- Elaborated unsupervised models
- High confidence of the models

...and future works

- User evaluation for readability
- Exploitation of models at runtime
- Anticipation of users decisions